Line source representation for laser-generated ultrasound
in an elastic transversely isotropic half-space
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Theoretical and experimental results are presented for a laser line source in an elastic, transversely
isotropic half-space. The thermoelastic soufl@ser sourceis represented as an appropriately
weighted shear stress dipole applied at the sample surface. The plane of isotropy coincides with the
half-space boundary. Analytical expressions representing the out-of-plane displacements for the
surface wave and for the epicentral cases are given for all crystal classes that exhibit elastic
transverse isotropy. In addition, quasianalytical results are given for observation points off the
epicentral axis. Theoretical wave forms for all of the source/observation geometries considered are
compared with experimental wave forms generated in single crystal zinc samples. The close
comparison between experiment and theory confirms, for this particular line source orientation and
crystal symmetry, that a laser line source is accurately modeled using an equivalent boundary stress.
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I. INTRODUCTION lar interest to this paper is the work by Paytdbwho has
treated a general class of problems for crystals that exhibit
Since the early 1980s, laser generated ultrasound hagansverse isotropy. Payton furnished a detailed analysis of
been used to determine material properties and to charactefe solution and the solution technique for a variety of tran-
ize material defects® To a large extent, the success of lasersient problems in bounded and unbounded solids. In addi-
ultrasonics has been the researcher’s ability to correctly pretion, Payton gave an explicit set of conditions, related to the
dict the temporal evolution of the displacement wave formelastic parameters of the material, that predict the existence
resulting from pulsed laser irradiation. Theories that assumef inflection points on the slowness curve. It is well
isotropic elastic properties work well for crystalline materials knowr?81%2°that these inflection points lead to behavior in
that have randomly oriented grains which are small comanisotropic materials that is markedly different from that in
pared to the wavelength of the interrogating ultrasonicisotropic materials. Thus, while transverse isotropy is per-
wave? However, for single crystals, the anisotropic nature ofhaps the simplest case to treat, it nonetheless exemplifies the
the material must be considered. peculiar behavior found in elastically anisotropic materials.
Stoneley’ studied the propagation of Rayleigh surface In this paper, the homogeneous equations of motion for
waves in certain single crystal systems. In particular, Stonea transversely isotropic material are solved subjected to a set
ley analyzed three specific cases, surface waves propagationf stress boundary conditions which has been shown to be
in the (0 0 1 plane of cubic crystals along tHé 0 0] and  equivalent to a thermoelastic line source in the limit of
[1 1 0] directions, and in the basal plane of hexagonal crysstrong optical absorptiotf. The plane of isotropy coincides
tals. Royer and Dieulesainextended the work of Stoneley with the boundary plane and the epicentral direction coin-
to include the analysis of Rayleigh wave propagation incides with the crystal symmetry axis and theaxis, Fig. 1.
orthorhombic and tetragonal systems. The analysis byror this problem geometry/crystal symmetry, the source
Stoneley and Royer and Dieulesaintonsidered the distur- specification and the solution are independent of the line
bance to have a planer phase front. source orientation® However, for convenience the line
To gain a better understanding of the underlying physicssource is taken to coincide with the axis. Expressions
the finite extent of the source must also be considered. Krautepresenting the out-of-plane displacements for wave propa-
extended the work of Lanfbby considering a transversely gation along(1) the free surface(2) epicentral axis, an¢3)
isotropic elastic half-space subjected to a source of finit®ff the epicentral axis are given. In all cases the solutions are
extent. Kraut used the method of Cagniard-de H8dbto  sought using the method of Cagniard-de Hoop. The first two
study the resulting displacements in single crystal Berylcases lend themselves to analytic solutions which in turn
Other researchels® have extended the work by Kralit. affords a detailed analysis of the solution procedure. The last
For instance, Mourackt all* used the Cagniard-de Hoop case is solved using a quasianalytical approach in which the
method to numerically obtain the solutions to Lamb’s prob-integration contour must be defined numerically. It is shown
lem in an anisotropic half-space. In their paper, Mowstdl.  that for the epicentral and off epicentral cases, the form of
assumed that the laser source could be modeled as a shélae solution depends strongly on the nature of the material
stress dipol¥~*8applied at the bounding surface. Of particu- anisotropy. For the sake of comparison with experimental
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Source

(iii ) crystals along the symmetry axis and off the symmetry
axis differs profoundly from their isotropic counterpart.

For transversely isotropic materials with the plane of
isotropy coinciding with the bounding plane, the equivalent
stress boundary conditions are independent of line source
orientatiort® and are given as

(029)lxy=0=F &' (x)H(7), (039 x,-0=0,

Plane of
isotropy

(3
B2oTo Baslo
F 2= @ ’ F 3= o y

F=(F3(1—x)+F,a),

whereTo=q,/pC (Refs. 17, 23, and 24s the instantaneous
temperature rise ari8}; are the thermal pressure coefficients.
The time coordinater=/(C44/p)t, which has dimensions

of length, was introduced so that the current analysis is con-
sistent with that of Paytoff. The transformed homogenous
equations of motion appropriate for a line source applied

FIG. 1. Problem geometry with source location and observation point2/0Ng @ plane of transverse isotropy are given by

(A,B,C). The line source is parallel to thg axis and the sample normal is

e AT Q2 i el ] —
parallel with thex; axis and the crystal symmetry axis. B Uzt Up g SUp+ Ik nUz 5= 0,

- _ 4
. . . . . . | 77KU2‘3_ 772U3+ C(U3’33_ SZU3:0. ( )

results, particular attention will be paid to zinc. Theoretical

results are compared with experimental wave forms in avheres a”dsﬂ are the transform parameters foand x;,

sample of single crystal zinc. Owing to the transversely isol’ espectively’ Solutions to the above system of equations are

tropic nature of the problem, the development of a line©f the form

source solqtlon closely par.allels the development of the more Un(7,X3,8) =Ae~Kat A e kaxe,

general point source solution of Hurley and Spicer

®

Us( 7],X3 ,S) = A3e_ k1X3+ A4e_k3X3,

Il. THEORY wherek,; are the physical roots to the slowness curve. Next,

Before embarking on a solution procedure, it is conve-the following substitution will be made so as to facilitate the
' Cagniard inversion technique:

nient to classify transversely isotropic crystals according to
the behavior of the displacements of these crystals along the - g/,
symmetry axis. Borrowing notation from Paytbtihese cat-
egories are

(i) (atpB)<y<(1tap),
(i) (Btl)<y<(atp)

7=Sw. (6)

The denominator of the secular equation can be rewritten
using the above substitutions as

- 2((a+ 1)+ y0?) +(Bo*+(B+1)w?+1)=0.
(72_4a,8)<0,(1) al’=((at D) +yo)+(Bo"+(B+ 1w +1) o

(i) y<(B+1) and (y*—4aB)<0 also B>a,

and

The four roots to Eq(7) may be written as

2 1/2
where the ratios of the elastic stiffness components3, y (@)= [(at1)+yo™+ Vh(w)] ’
and « are defined as 2o

C C
a=—=2 =2 k=(1+aB—vy)?
Cya Cya
Ci3 z
y=1l+ap—|—+1 (2
Cag

For crystals belonging to the first category in Ed), the
roots of the slowness equation are purely imaginary. In ad-
dition, there are no cusps in the wave-front curves that inter-

fo(w)=—{1(w),

[(a+ 1)+ yw?— Vé(w)]¥?
V2a ’

{3(w)= ®

{i(w)=—{3(w),
¢(w)=[yw2+(oz+ l)]2—4a[,8w4+(,8+ 1) w?+ 1].

sect the symmetry axis for clagp crystals. The crystals The coefficientsA; and A4 are related toA; andA, by the
belonging to categorie@i) and(iii) have complex roots. For fact that the above displacements must solve the equations of
class(iii) crystals, the triangular portion of the wave-front motion. By substituting both solutions into the transformed
(lacuna is centered on the symmetry axis. It will be shown equations of motion, it can be shown that

that for clasdi) crystals, the solutions along the free surface
and along the epicentral direction behave in a similar manner
to isotropic materials. However, the solution for cl@ssand
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The coefficientsA, are found by requiring the displace- _1. G, \\
ments in Eq.5) satisfy the boundary conditions in E), @ | Y
~ L N
F{io? ) —l) ) C3 \
Ag=—————[al’+(k—1)w?+(k—1 , 1 I~ A
’ SC44(§1_§3)D[ {5t ) ( )] ! I \
Fl30? ne G |
I 2 2 i(B) : |
Aj=——————|alit(k—1Dw°+(k—1)], (10 !
4 SC44(§1—§3)D[ {1+ ) ( )l (10 B e e e s o s s e i
D=[2(1- k)(0*+ 0?) ~ (yo’+ a)(w’+ 1)~ alils], ®1
whereD is the Rayleigh denominator. FIG. 2. Integration contour for the vertical displacemenyt, at the bound-

ing surface.

A. Solutions along the bounding surface

—1 1
For displacements along the bounding plang=(0), Us(X2,0,7) =L

1 1
;R%J‘ +Pf u3(S,Iw2)Idw
C )
the Cagniard integration path is along the imaginargxis. !
Operating on theau; displacement with the inverse Fourier +{imresidue@=iw,}
operator as follows, and noting thaj is even inw, gives

NB.
1 (> +J +f Us(S,iwy)idw
U?,(Xz,O,S):Re;j Us(s,w)dw, Cy J1
0

0
~Fao? +f +f _ag(s,iwz)idw]
tl3(S,w)= —w[aglé’s-f— (1— K)(a)2+ 1)]ei5w|xz" Cy 1B

C.D
(11

, (14)

whereL ! is the inverse Laplace operator and i front
of the second integral denotes the Cauchy principle value. A
Cagniard Path:iw|x,|=7=real. typical displacement wave form generated using @¢) is
own in the inset of Fig. 3. The initial disturbance, referred
as the surface-skimming bulk wave, arrives at the longi-
tudinal velocity and vanishes at the shear wave velocity. The
later arriving Rayleigh wave travels as a Dirac delta function.
(i) &(w)=0, The characteristics of the wave form for clgss class(ii),

(i) yo?+(a+1)+p(w)=0. (12

h
Before the Cagniard inversion can be performed, the brancfb
points and singularities associated withmust be identified.
Branch points foré(w) may arise in two distinct ways:

Presently, only the inversion of; is being considered. Since Q 1 0.027 Q_C,’

us is an even function of/¢(w), branch points arising from £ Q

(i) in Eqg. (12) need not be considered. The singularities in & 05f 10013 g

the functionD (w) will now be discussed. Since the branch °E’ | 8

points for this function have been discussed above, only pole 8 of% 10 g

singularities inD(w) need to be considered. After squaring %_ '%

and simplifying, the equation for the Rayleigh denominator g 0.5 N 1008 g

yields I el (ﬁﬁz /. lo0zr g

= : 3

aSw?+a(a+2a)o*+a(2a+ta—B)w’+ala—1)=0, EJ © T=1 =~

£ >

a=2k—2+y. (13 o© 157 {004 3

< 0 05 1 1 15 3

The roots of interest will lie on the positive imaginary axis. % 25 " : : : 00-054 ==
1

The remaining roots will lie on the nonphysical sheets of the .
Riemann surface. ThéRayleigh pole of Eq.(13) will be Time (us)

denoted b)D_(I wr) fo' Now the mtegr_atlon contour and the FIG. 3. Comparison between experiment and theory for the surface wave
subsequent inversion of the integral in Efjl) may be per-  case. The sample is single crystal zinc with thaxis perpendicular to the
formed. Figure 2 shows the complexplane along with the free surface. The nonzero experimental displacement corresponding to the
integration contour. The real axis coincides with the Fourier"r}tegva' be“l"’eeh” ‘hel end of the Sll”fafce Slkimbmingdbu'k wave and thhe a"ival'
. . . . . s . of the Rayleigh pulse is a result of pulse broadening. Inset: Theoretica
mvers_lon .path 'T;md the |mag|_nary axis CO'_nCIdeS with thedisplacementu3, for surface waves generated with a line source in zinc as
Cagniard inversion path. The inverted solution may be Writ-5 function of T=/x,. A delta function is represented by vertical line at

ten formally as T=1.13.
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and clasdiii) materials are similar. The similarity is due to
the fact that the contribution from the branch point corre-
sponding td(i) in Eq. (12) does not affect the solution for the
vertical displacement. However, this is not the case for the
in-plane displacement components.

J(T)

1.5 2

B. Solutions along the symmetry axis

Another class of solutions that can be inverted easily
using the Cagniard technique corresponds to solutions along
the epicentral axis, or for this particular experimental geom-
etry, along the symmetry ax{see observation poir{B) in
Fig. 1]. The location of the Cagniard path in the complex
plane depends on the category of crystal being investigated.

For materials belonging to categofiy, the Cagniard path is 0 0.5 T1

along the reakw axis. For clasgii) and (iii) materials, the
Cagniard path is off the reab axis. The formal solution for
the out-of-plane displacement along the epicentral axis i§ted with a line source in Beryl as a function Bf Bottom: Theoretical

FIG. 4. Top: Theoretical displacement;, for the epicentral wave gener-

displacementys, for the epicentral wave generated with a line source in an

given as isotropic materialpolycrystalline aluminurn

_ 1 (= _
U3(01X3,5)=EJ7 Uz(7,X3,S)s do,

T
tj3( nix3as):A3e_{1X3s+ A4e_{3X3S’ (15) T: X_3

whereA; andA, are defined in Eq10). Also note that since
the roots to the slowness equatiords, and {5, are even

functions of w, Us(7,X3,8) is also even, allowing the inte-
gration limit to be changed to the positive axis. For con-

venience the following substitutions are made:

m=w2,

_ 1
u3(0,x3,s)=;Re{ll+|3},

(16)

| 1= fo Ase_ {1%gs d’G)', |3: 0 A4e_ {3%gs dm,

Aziss

Agi=—m
3/4 2\/5

Note that the definition foll has been redefined for the epi-
central casésee Fig. 3 caption Changing variables fronw

to rand operating on the expression for the vertical displace-
ment, given in Eq(16), with the inverse Laplace operator
gives

Us(0x3,T)=FJ(T),

(19
0@'1
aT

J(T)= %Re{& H(T-1)

— 9
+A, ;3H(T—1/JE)].

A typical wave form generated from E¢L9) using the ma-
terial constants of Beryl is shown in Fig. 4. The displacement

This substitution consolidates the branch cuts along the rejyave form for Beryl has characteristics similar to the dis-
and imaginary axes so they both lie on the real axis. Th&lacement wave form for an isotropic material, also shown in

Cagniard path for the integrals in E(@.6) is defined by

{1 ®)X3=T,

7

7 is real and positive.
1. Solution for class (i) materials

For class(i) materials, the above condition anis met
for real w, giving the positive reats axis as the Cagniard
contour. Solving Eq(8) for w in terms ofr gives

—B=*+B?—4AC

W13~ A )
A=B,
B=B+1—y(T)? (18

C=1—(a+1)(T)*+a(T)%

J. Acoust. Soc. Am., Vol. 116, No. 5, November 2004 D.

Fig. 4. Both wave forms show the presence of two distinct
wave arrivals.

2. Solution for class (ii) and (iij) materials

For class(ii) and (iii) materials, the Cagniard path no
longer lies on the reads axis. Before embarking on the so-
lution for these materials, first the location of the branch
points must be investigated. As was the case for solutions
alongx;=0, branch points associated witkw) may occur
in two ways. In contrast to the surface wave case, the expres-
sion for u; for the epicentral case is an odd function of
V¢ (w), and as a consequence, the branch points arising
from (i) need to be considered in addition to the branch
points arising from(ii) [see Eqg.(12)]. The expression for

V¢ (w) may be rewritten as

H. Hurley and J. B. Spicer: Laser ultrasound in an anisotropic half-space 2917



Vo(w)=\(y*—4ap)(w-w,)(w—w_),

_—[Aet 1) —2a(B+D)]F VAla(at B~ ) (1T aB— )]
(v*~4ap)

(20

W +

Taking zinc as an example€, will have branch points at The second equation of EqR2) is satisfied ifw,=0. Since
w=w_ and w=w . while {3 will have branch points at the branch points for clagé) and (iii) materials lie on the
w=w_, w=w,, w=—1, andw=—1/8. The Cagniard real axis, the first equation in Eq&2) imposes the addi-
path for the first integral is again defined by Efj7), butw  tional constraints

is now a complex variable given by

w=m1+im2. (21) m—smlgm-%— for gl(w)l

Substituting Eq(21) into Eq.(17), and equating the real and (239

imaginary part of the equation gives —lpsw;sw, for {3(w).

T2wi+(a+ 1) T?—aT*=B(wi-wd)+(B+ 1w, +1,
Yot (atd) “ Alwi—wy)+(B+Dw, If w,#0, thenw, andw, can be expressed in terms of the

YT2w,=2Bw w,+ (B+1)w,. (22 parametei = 7/x5 as follows:
|
T2 —(B+1 Vaaf—y(T2=T2)(T?-T2
oy (T)= 2 2(5 ), mZ(T):[ aB—y( - )( )], 24
2 ~[¥(B+ D =28+ )] VAB(at f=y)(1+af=y)
: (4ap=7") '

Using zinc as an example, the Cagniard paths{foand{,  the various wave fronts in Fig. 6 is best understood by ref-
are shown in Fig. 5. The expression for the out-of-plane diserencing the portion of the wave front curve that pierces the
placement in Eq(16) may be rewritten as symmetry axis, Fig. 5 inset. The first wave arrival corre-
sponds to the longitudinal branch of the wave front curve.
_ 1 T+ Te . . .
U3(0.X3,T)=L‘1[—Re[f |11+f |11+f |11+f l 33 The solution gives zero for the portion of the wave that cor-
™ 70 Iy Iy 0 responds to the interior of the cuspidal triangle. This zone
o . behind the leading wave front is referred to as a lacuna. The
+ fﬁ |33+f |3gf |33+f 33 solution has a singularity at=T, corresponding to the
@y Te 70 I's conical point on the wave front.
Iy

C. Observation points off the symmetry axis

Consider the inverse of Eq5) for observation points

— ow — Jw

l11= A3e‘STTdT, I 35=Ase 57 5 dr, that are neither along the symmetry axis nor on the bounding
T T surface. The geometry of the problem is shown in Fig. 1
(a+1)—(at+1)’—4a where now the point of observation is point C. The source is

To= ToX3= \/ 5 , a surface line source. The observation angles defined as

the angle between the symmetry axis and a line joining the

—B+B2—4aC (29 source and observation point. Formally, the inverse of(&q.

Te=TeX3= \/ 5a : is written as

_ 1 °
B=—(w.y+a+1), “3(X2’X3’T):L1[ERGL (Aot

C=w’pB+w.,(B+1)+1.

. . . + A e {xas)glselxels dy | 26
A plot of the theoretical displacement along the epicentral 4 ) @ 26

axis for zinc is given in the inset of Fig. 6. The character of . . '
the epicentral wave form for zinc is considerably dif'ferentThe Cagniard path for Eq26) is defined by
than its isotropic counterpart, shown in Fig. 4. The arrivals of ~ (a) {1X3—iw|Xs|=1,
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0.4t
§/0.2 3
o AT~
g or H Symmetry Axis
o(T)—Y
-0.21
0)(T3)\
04r //_ r\ |
-0.6 . . L
-1 -0.5 0 0.5 1
real (m)

FIG. 5. Cargniard contour for zinc for observation points along the symmeFIG. 7. Cargniard contour for zinc for observation points off the symmetry
try axis. Solid line represents contour corresponding t@nd the dashed axis (#=10°). Solid line represents contour corresponding to @33 and
line represents the contour correspondinggo Inset: Enlargement of wave the dashed line represents the contour corresponding td2z). Inset:

front near symmetry axis. Enlargement of wave front near symmetry axis.
(b)  Lxg—iolxg|=1, 27 a®T? siré( 6)
C(0,T)=2F(0)G(0,T)—16———
7 is real and positve. cos'(0)
The parametric equations representing the Cagniard path are —2(atl)ytda(ptl),
obtained by substituting Eq€8) into Egs.(27) and squaring . . (28)
twice to eliminate the radicals. This procedure yields a fourtrb( 0,T)= 8iaTsin(0)G(6.T) ,
order equation fow of the form cos(6)

A(0)w*+B(0,T)w3+C(0,T)w?+D(6,T)w+E(4,T)=0, E(6,T)=G(0,T)—(a+1)’>+4a,

A(9)=F(0)+4aB— > co 2asin(6)+ycod(0) )\
8i T sin( 6)F(6) cos(6)
B(6,T)=—m———,
cos( ) 2aT?—(1+ a)co(0)
G(6,T)= .
cos(6)

Equation(28) has four complex roots®;, ®,, 05, and

®,, which occur in complex conjugate pairs. The roots la-
beled®, and ®5 correspond to the physical sheets of the
Riemann surface. For the special case of an isotropic solid,
a=B=+v/2, Eq.(28) can be factored into two second order
equations that can be solved analytically. For the present
problem of transverse isotropy, the roots must be found nu-
merically.

The character of the Cagniard paths is dictated by the
location of the lacunas relative to the observation direction.
Thus, all crystal classes will have Cagniard paths with simi-
lar characteristics. As a representative example, the Cagniard
. . ‘ . path for zinc will be discussed in detail. The wave front for
0 1 2 3 4 5 zinc is shown in the inset of Fig. 7. The lacunas in BRe

Time (us) branch are centeredi along the symmetry axi_s and along the
bounding surface. Figure 7 shows the Cagniard path for an
FIG. 6. Comparison between experiment and theory for the epicentral cas@bservation angleg=10°, that intersects the lacuna. With the
The sample is single crysta! zinc With tlveaxis perpendicular to the free_ Cagniard path numerically defined, the inversion of the
;urface. The nonzero expgrlmental displacement corr'espondln.g to the .'nt'fr'ansformed displacements, E86), may be performed. The
rior of the cuspidal triangle is a result of pulse broadening. Inset: Theoretical ) . : . . .
displacementus, for the epicentral wave generated with a line source in Off epicentral vertical displacement in zinc for a detection
zinc as a function of. angle of 10° is shown in the inset of Fig. 8. The characteris-

2
o
a

J(T)

-0.05 |

(=]
-
(4]

-0.25}

Interferometer Voltage (V)

-0.35
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0.5 - , ' ' tated by the characteristics of the stabilization circuit. If the
interferometer signal voltage is much smaller that the inter-

b 0 WMWMWW . ferometer peak-to-peak voltage, then the signal voltage and
o the surface displacement are related as follows:
% -0.5f 1 632.8 n
> _ Ds=Vil —— (29
‘g " whereDg represents the surface displacement ®pdepre-
g / / sents the ratio of the interferometer signal voltage to the peak
g SEL T'm 1 to peak voltage.
E T, For same side detection, care had to be taken so as not to
£ of Tl |/ 1 saturate the photodiodes in the interferometer with light from

0 05 1 15 2 the Nd:YAG laser that had scattered off the sample surface.

A beam stop was used to collect the specular component of
2 4 6 8 10 the scattered light while a 1.064m band reject filter was
Time (us) used to block the remaining scattered light from reaching the
, _ _ photodiodes. In order to approximate an infinite line source,
FIG. 8. Comparison between experiment and theory for an obsenvatioy ¢nyex/concave lens combination was used as a telescope
point off the symmetry axis. The sample is single crystal zinc withcthgis ) . .
perpendicular to the free surfa¢é=10°). Inset: Theoretical out-of-plane {0 €xpand the beam while a cylindrical lens was used to
displacement due to line-source excitation in zinc as a functioh of focus the generation beam to a line. This technique of gen-
erating a laser line source was exploited by Aindetal?®
tics of the wave form shown in Fig. 8 are similar to the to produce high amplitude surface acoustic waves. The ap-
epicentral wave form shown in Fig. 6. The primary differ- Proximate line dimensions, as measured from a piece of laser
ence is the splitting of the wave resulting corresponding tdrofiling paper, were 20 mm0.2 mm.
the conical portion of the wave front. The single crystal zinc specimens were cleaved along
basal planes and then polished using Buehler Carbimet paper
to produce a mirrorlike surface. The crystal orientation was
determined using x-ray diffraction. The polished surface was
The experimental setup used to generate and detect uberpendicular to the x-ray beam resulting in a diffraction
trasound is shown in Fig. 9. The generation of the ultrasonipattern that had sixfold symmetry, confirming that the pol-
disturbance was accomplished by irradiating the sample witished surface coincided with the basal plane. The cylindrical
a pulsed Nd:YAG operating at 1.064n.25~2The transverse zinc sample used for same side detection had a radius of 15
spatial profile was Gaussian and the temporal pulse lengtihm and a length of 60 mm. The sample used for detection of
was approximately 10 ns. The energy per pulse was typicallgpicentral waves had a radius of 15 mm and a length of 5
20 mJ. The ultrasonic disturbance was detected with a skewam. The voltage signals from the interferometer were re-
stabilized Michelson interferometer operating at 632.8 nmcorded using a LeCroy 9354m digital oscilloscope operating
The upper limit of the bandwidth was determined to a largeat 500 M samples/s.
extent by the frequency response of the photodetectors in the
interferometer. The photodetectors were manufactured b?/
EG&G (product designation FFD-04@&nd have a specified V. RESULTS AND DISCUSSION

upper bandwidth limit of 150 MHz into a 5@ load. The A comparison between theory and experiment for same
lower limit of the bandwidth, estimated at 1 kHz, was dic- gije detection is presented for single crystal Zinaxis per-
pendicular to the surfagen Fig. 3. The experimental curve

is single shot data and the source/receiver separation was 9.1
mm. The theoretical result, inset Fig. 3, is convolved with a
Gaussian functiortfull width at half-maximum=300 ng in

order to mimic broadening effects. Pulse broadening for
same-side detection is mainly caused by the finite transit
time of the acoustic signal across the detection/generation
spot. The first disturbance turns on and off at times corre-

Ill. EXPERIMENT

Nd:YAG Pulsed Laser

Data Acquistion
and storage system

c-axis of sponding to the arrival of the longitudinal wave and shear
Zn crystal . .
wave, respectively. The largest disturbance corresponds to
1064 nm Band the Rayleigh pole _and is in the form of a traveling delta
Reject Filter function. The amplitude of the Rayleigh wave for the theo-
Michelson-type retical curve was scaled to match the experimental ampli-
Interferometer tude. Since the data was single shot, comparison of theoret-

FIG. 9. Experimental setup. A Nd:YAG laser is used to generate the uItra—ICaI and eXpenmental ampIIIUdeS allows an estimate of the

sonic disturbance and a Michelson-type interferometer is used to detect tk@_ptical_ reﬂeCtion. coefficient. The theoretical amplitude,
ultrasound. given in Eq.(18), is expressed by
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_ 1 Cagniard—de Hoop technique was used to analytically invert
ARayleigi= F 0o T VCaalp, the transformed solution for the epicentral case as well as for
Ny the surface wave case. A quasianalytical approach, where the

— 1 [Ba B, (30) Cagniard path was defined numerically, was used to invert

= —[—(1— K)+ — «af, the transformed solution for observation points off the sym-
PC1Ca Caa metry axis.

whereqg represents the absorbed laser energy ldrépre- Experimental validation of the theory was performed us-

sents the Gaussian pulse width. The data shown in Fig. 3 wasg single crystal zinc samples. The zinc samples were cut to
produced by a 37 mJ pulse distributed over 1 cm. Scaling thbave the free surface coincide with a plane of isotropy. The-
theoretical amplitude of the Rayleigh wave to match the exoretical and experimental results for zinc agreed well for all
perimental data, the reflectivity at the sample surface wathe source/observation geometries considered.
estimated to be 90%, which is comparable to published val-
ues for zinc. It should be noted thaF the accuracy of thes CKNOWLEDGMENTS
results decreases as the aspect ratio, the ratio between the
line source length and the source receiver distance, de- The authors gratefully acknowledge Dr. Robert E. Green
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tions from the back surface of the sample must be considScience-BES, Materials and Engineering Physics program
ered. Each time the wave reflects off the sample surface, thender DOE Idaho Operations Office Contract No. DE-ACO7-
amplitude and temporal character of the wave are modified9ID13727.
The modification to the wave is described by reflection co-
efficients, which are a function of observation angle. For the
isotropic case, Ro$&shows that along the epicentral direc- *C: Scruby, R. Dewhurst, D. Hutchins, and S. Palmer, “Laser generation of
tion, reflection primarily alters the amplitude of the reflected uItrasoun_d in metals,"Research Technlquef in Nondestructive Testing

- 2 - ~ (Academic, New York, 1982 \ol. 5, pp. 281-327.
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direction for a point source can be obtained by taking a temporal and®The solution procedure involves applying a Fourier/Laplace transform to

spatial derivative of the line source solution. remove dependence on the spatial and temporal varialfi¢s,s)
The effect of heat diffusion has been neglected antepresents the laser — =[_[5f(x,,t)e” (7257 dr dx,.

energy absorbed by the sample. R@Ref. 17, states that a point-source 265, J, Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated

representation for the radiation from a localized source is adequate for ultrasound: Its properties, mechanisms and multifarious applications,” J.

A>h where\ is the ultrasonic wavelength and h is the largest character- Phys. D26, 329-348(1982.

istic length relating to the source region. Red®ef. 24 has shown that ?’R. J. Dewhurst, C. Edwards, A. D. W. Mckie, and S. B. Palmer, “Com-
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York, 1971). 116-120(1982.
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